OPTOISOLATED SERIAL PORT for FULL-ARM-05 and FA-07

The Full-Arm-01, Full-Arm-05, FA-07, FA-15 use an optoisolated port.
Attached is a scheme draft of its output used with a " 20 mA current loop" interface for the connection to a Repeater.
Here is the information regarding the serial protocol used on the Full-Arm-05 and FA-07 apparatuses:
Serial type: $2400-\mathrm{N}-8-1$
The apparatuses send out continuously a string of 10 bytes. The string is repeated every about 42 msec .
Here is what every byte of the string contains:
1° byte: FFh $=$ Start string
The FFh value identifies the beginning of the string.
2° byte: $\mathrm{XXh}=$ Right score
Ex.: if $=06 \mathrm{~h}$, the right score is 6
3° byte: $\mathrm{XXh}=$ Left score
Ex.: if $=12 \mathrm{~h}$, the left score is 12
4° byte: $\mathrm{XXh}=$ Seconds of the time (units and tens)
Ex.: if $=56$ h, the seconds of the time $=56$.
5° byte: $0 X h=$ Minutes of the time (only units)
Ex.: if $=02 \mathrm{~h}$, the minutes of the time $=2$.
6° byte: $\mathrm{XXh}=$ Define the state of the lamps (red, green, whites, and yellows). Every bit defines the state of a lamp (zero=OFF, 1=ON).
Following is the correspondence of the 8 bits:
Bit D0 = Left white lamp
Bit D1 = Right white lamp
Bit D2 = RED lamp (left)
Bit D3 = GREEN lamp (right)
Bit D4 $=$ Right yellow lamp
Bit D5 = Left yellow lamp
Bit D6 $=0$ not used
Bit D7 $=0$ not used
Example: if byte $6^{\circ}=14 \mathrm{~h}$, we have $\mathrm{D} 2=1$ (red light=on) and D4=1 (right yellow light=on)
7° byte: $0 \times \mathrm{h}=$ Number of matches and Priorite signals.
The D0 e D1 bits define the number of matches (from 0 to 3):
D1=0 D0=0 Num.Matchs = 0
D1=0 D0=1 Num.Matchs = 1
D1=1 D0 $=0$ Num.Matchs $=2$
D1=1 D0=1 Num.Matchs = 3
The D2 e D3 bits define the signals of Priorite:
$\mathrm{D} 2=$ Right Priorite $(\mathrm{if}=1$ is ON$)$
D3 = Left Priorite ($\mathrm{if}=1$ is ON)
Example: if byte $7^{\circ}=0 \mathrm{Ah}(\mathrm{D} 0=0, \mathrm{D} 1=1, \mathrm{D} 2=0 \mathrm{D} 3=1$), the number of Matchs is $=2$ and the Left Priorite lamp is ON .
8° byte: XXh This byte is only for our use. Do not consider this byte.
Its value is always different from FFh.
9° byte: Red and Yellow penalty cards.
The 4 bits D0, D1, D2, e D3 are used on the following way:
D0 $=$ Right RED penalty card
D1 = Left RED penalty card
D2 $=$ Right YELLOW penalty card
D3 = Left YELLOW penalty card
Do not consider the bit D4 and D5 which can be at zero or 1, instead the bit D6 and D7 are always $=0$.
Example: if byte $8^{\circ}=38 \mathrm{~h}$, we have $\mathrm{D} 3=1$ and so the left yellow penalty card is ON.
10° byte: CRC, it is the sum without carry of the 9 previous bytes.
As example, the string could be:
FFh, 06h, 12h, 56h, 02h, 14h, 0Ah, 00h, 38h, 56h
which will display: Right score $=6$, Left score $=12$, Time $=2: 56$
The Lamps ON are: Red, Yellow right, Left priorite.
Number of Matchs = 2
Left yellow penalty lamp $=\mathrm{ON}$.

